Mikroplastik — ukryty problem współczesnego świata

Home / Mikroplastik — ukryty problem współczesnego świata

Oliwia Herok1, Marcelina Hnatkowska1

  1. Uniwersytet im. Piastów Śląskich we Wrocławiu, Wydział Farmaceutyczny

Tytuł rozdziału/artykułu: Mikroplastik — ukryty problem współczesnego świata

Monografia: Epidemie i choroby cywilizacyjne XXI w. (A. Smakosz (red.))

Czasopismo: ELIXIR

Tom: I

Strony: 87–95

Rok wydania: 2023

p-ISBN 978-83-965235-8-7
e-ISBN 978-83-965235-9-4
ISSN 2956-7297

Plik do pobrania:


Coraz więcej drobin plastiku odkrywanych w różnych elementach środowiska. Mikroplastik i nanoplastik stają się problemem zagrażającym zdrowiu człowieka. Jest to temat trudny do zbadania, ponieważ rozmiary cząsteczek powodują trudności w ich wyodrębnianiu. W artykule zebrano źródła mikroplastiku oraz podkreślono najważniejsze drogi wchłaniania do organizmu. Aspekt toksyczności na ludzki organizm wymaga jednak dalszych badań.

Słowa kluczowe: mikroplastik, mikrodrobiny, tworzywa sztuczne, zanieczyszczenia


Title: Microplastic—the hidden problem of the modern world

More and more plastic particles are being discovered in various elements of the environment. Microplastics and nanoplastics are becoming a problem that threatens human health. This is a difficult topic to study because the size of the molecules makes it difficult to isolate them. The article summarizes the sources of microplastics and highlights the most important routes of absorption into the body. However, the aspect of toxicity to the human body requires further research.

Keywords: microplastic, plastics, pollution


  • Anbymani, S., Kakkar, P. (2018). Ecotoxicological effects of microplastics in biota: a review. Environmental Science and Pollution Research, 25(15), 14373–14396. https://doi.org/10.1007/s11356-018-1999-x.
  • Boucher, J., Friot, D. (2017). Primary Microplastics in the Oceans: a Global Evaluation of Sources. Gland, Switzerland: IUCN. 43pp. https://doi.org/10.2305/IUCN.CH.2017.01.en
  • Cox, K. D., Covernton, G. A., Davies, H.L., Dower J.F., et al. (2019). Human Consumption of Microplastics. Environmental Science and Technology, 53(12), 7068-7074. https://doi.org/10.1021/acs.est.9b01517.
  • Crawford, C. B., Quinn, B. (2017). The interactions of microplastics and chemical pollutants. W: C. B. Crawford, B. Quinn (red.), Microplastics Pollutants (s. 131-157). Elsevier. 
  • Eerkes-Medrano, D., Leslie, H. A., Quinn, B. (2019). Microplastics in drinking water: A review and assessment. Current Opinion in Environmental Science & Health, 7, 69-75. https://doi.org/10.1016/j.coesh.2018.12.001.
  • De Falco, F., Di Pace, E., Cocca, M. et al. (2019). The contribution of washing processes of synthetic clothes to microplastic pollution. Scientific Reports, 9, 6633. https://doi.org/10.1038/s41598-019-43023-x.
  • Deng, Y., Zhang, Y., Lemos, B., Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7, 46687. http://doi.org/10.1038/srep46687.
  • Donaldson, K., Stone, V., Gilmour, P. S., Brown, D. M., et al. (2000). Ultrafine particles: mechanisms of lung injury. Physical Transactions of Royal Society, 358, 2741-2749. https://doi.org/10.1098/rsta.2000.0681
  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., et al. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453-458. https://doi.org/10.1016/j.envpol.2016.12.013.
  • Jadhav E. B., Sankhla, M. S., Bhat, R. A., Bhagat, D.S. (2021). Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management, 16, 100608. https://doi.org/10.1016/j.enmm.2021.100608.
  • Farhat, S. C. L., Silva, C. A., Orione, M. A. M., Campos, L. M. A.,et al. (2011). Air pollution in autoimmune rheumatic diseases: A Review. Autoimmunity Reviews, 11, 14-21. http://doi.org/10.1016/j.autrev.2011.06.008.
  • Galloway, T. S. (2015). Micro- and Nano-plastic and Human Health. W: M. Bergmann, L. Gutow, M. Klages (Red.), Marine Anthropogenic litter (s. 343-366), Springer, Cham. 
  • Green, A. L. R., Putschew, A., Nehls, T. (2014). Littered cigarette butts as a source of nicotine in urban waters.Journal of Hydrology, 519, 3466–3474.
  • Hernandez, L. M., Xu, E. G., Larsson, H. C. E., Tahara, R., et al. (2019). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environmental Science & Technology, 53(21), 12300-12310. https://doi.org/10.1016/j.jhydrol.2014.05.046.
  • Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., et al. (2019). Microplastics in drinking water treatment – Current knowledge and research needs. Science of The Total Environment, 667, 730-740. https://doi.org/10.1016/j.scitotenv.2019.02.431.
  • Kelly, F. J., Fussel, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504- 526. http://dx.doi.org/10.1016/j.atmosenv.2012.06.039.
  • Leslie, H. A. (2014). Review of microplastics in cosmetics. IVM Institute for Environmental Studies, 476, 1-33.
  • Madsen, K.L. (2013). Air pollution effects on the gut microbiota. Gut Microbes, 5(2), 215-219. http://dx.doi.org/10.4161/gmic.27251.
  • Shen, M., Li, Y., Song, B., Zhou, C., et al. (2021). Smoked cigarette butts: Unignorable source for environmental microplastic fibers. Science of The Total Environment, 791, 148384. https://doi.org/10.1016/j.scitotenv.2021.148384.
  • Prata, J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115-126. https://doi.org/10.1016/j.envpol.2017.11.043. 
  • Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., et al. (2019). Environmental exposure to microplastics: an overview on possible human health effects. Science of The Total Environment, 134455. https://doi:10.1016/j.scitotenv.2019.134455.
  • Revel, M., Châtel, A., Mouneyrac, C. (2018). Micro(nano)plastics: A threat to human health? Current Opinion in Environmental Science & Health, 1, 17-23. https://doi.org/10.1016/j.coesh.2017.10.003
  • Liu, S., Guo, J., Liu, X., Yang, R., et al. (2023). Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Science of The Total Environment, 854, 158699. https://doi.org/10.1016/j.scitotenv.2022.158699.
  • Sommer, F., Dietze, V., Baum, A., Sauer, J., et al. (2018). Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol and Air Quality Research, 18, 2014-2028. https://doi.org/10.4209/aaqr.2018.03.0099
  • Shruti, V. C., Pérez-Guevara, F., Elizalde-Martínez, I., Kutralam-Muniasamy, G. (2020). First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks – Future research and environmental considerations. Science of The Total Environment, 726, 138580. https://doi.org/10.1016/j.scitotenv.2020.138580.
  • Valavanidis, A., Vlachogianni, T., Fiotakis, K., Loridas, S. (2013). tPulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journals of Environmental Research and Public Health 10(9), 3886-3907. https://doi.org/10.3390/ijerph10093886
  • Van Cauwenberghe, L., Janssen, C.R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65-70. https://doi.org/10.1016/j.envpol.2014.06.010.
  • Vianello, A., Jensen, R. L., Liu, L., Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9, 8670. https://doi.org/10.1038/s41598-019-45054-w.
  • Wang, C., Zhao, J., Xing, B. (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407, 124357. https://doi.org/10.1016/j.jhazmat.2020.124357.
  • Wen, B., Zhang, N., Jin, S.-R., Chen, Z.-Z., et al. (2018). Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid. Aquatic Toxicology, 195, 67-76. https://doi.org/10.1016/j.aquatox.2017.12.010.
  • West-Eberhard, M. J. (2019). Nutrition, the visceral immune system, and the evolutionary origins of pathogenic obesity. Proceedings of the National Academy of Sciences of the United States of America, 116(3), 723- 731. https://doi.org/10.1073/pnas.1809046116. 
  • Wright, S. L., Rowe, D., Thompson, R. C., Galloway, T. S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Current Biology, 23(23), R1031-R1033. https://doi.org/10.1016/j.cub.2013.10.068
  • Wrona, M., Nerín, C. (2020). Analytical Approaches for Analysis of Safety of Modern Food Packaging: A Review. Molecules, 25, 752. https://doi.org/10.3390/molecules25030752
  • Chen, X., Chen, X., Liu, Q., Zhao, Q., et al. (2021). Used disposable face masks are significant sources of microplastics to environment. Environmental Pollution, 285, 117485. https://doi.org/10.1016/j.envpol.2021.117485.
  • Zhu, D., Chen, Q.-L., An, X.-L., Yang, X.-R., et al. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 116, 302-310. https://doi.org/10.1016/j.soilbio.2017.10.027


Uznanie autorstwa-Użycie niekomercyjne-Na tych samych warunkach 4.0 Międzynarodowe (CC BY-NC-SA 4.0)